

Scan to know more

BROADENING **THE CIRCLE OF INNOVATION** WITH SUPERIOR STEEL SOLUTIONS

CIRCULAR PRODUCT PROFILE

Corporate Office

SG Centre, 37C, Block A, Sector 132, Noida, Uttar Pradesh 201304, India T:+91-120 6918000 F:+91-120 4041444

Stay connected. Stay updated.

😭 🛅 🛛 🕞 / APL APOLLO 🛛 🎯 / APL APOLLO OFFICIAL 🛛 TOLL FREE: 1800-102-3737

info@aplapollo.com | www.aplapollo.com

ີ

Sudesh Group is India's leading Steel Tubes and PVC Pipes manufacturer with 14 plants across different locations in the country. It's a pioneer in steel tubes of different types and shapes. For over 3 decades, SG Group has been revolutionizing the Steel Tubes manufacturing industry.

APL Apollo, a part of SG Group, is the country's largest manufacturer of steel pipes and tubes. Using High Frequency Induction Welding Technique (HFIW), APL Apollo has a capacity to produce 3.6 million tonnes of pipes per annum. The company is the unrivalled pioneer of Direct Forming Technology (DFT) as well as many other innovative products in the country.

OUR CONSTANT DRIVE FOR INNOVATION AND EYE FOR DETAIL HAS EARNED US MANY PRESTIGIOUS ACCREDITATIONS

ISO CERTIFICATE-9001-2015

UL CERTIFICATE

TWO STAR EXPORT HOUSE CERTIFICATE

8854

W.No. AB/

HITE Date 17.12.0015

HETPlace MX MLAN

House in accordance with the provisions of the Fereign Trade Policy, 2017-30 00 This Certificate is velid for a period of "11% years,

of the burn decays us to pass to Field March 04,10,2000, "Warnet control Date value arranged 11,45,0000 mails dealying to arrange in passes, in all processing ar the 2015-2020 marching of domain to date."

(WETH N./File No.)^{05/75/35/675/set4/set/ac.}

(number atkans)

क्षप महानिदेशक, बिदेश व्यापन

ISO CERTIFICATE-45001-2018

Certificate of Compliance	
Certisti verter annabis (2014) Anna Tenzona (2	Underwriters Laboratories Inc.
This is to verify that representative samples of the prod assuming to the current UL regularization.	net are specified on this certificate ware tested
Schedule ID start pipes in the \$2,34,1,1-\$4,1-\$2.a	nd 2 in sines
Schedule 40 steel pipes in the 5/2, 3/4, 1, 1-8/4, 1-6/2, 3	1,242,3,342,4,5,6 and 8 in. size.
Schedule XI seel pipes in the 8 and 10 in. sizes.	
Schodule 20 steat pipes in the K, 10 and 12 in. sizm.	
Schedule 10 met pipes in the 346, 1, 8-346, 1-342, 2, 3-1	12, 3, 3-5/2, 4, 5 and 6 in. state.
	.¥
a start of the second	
Prince of the Section Supervised Section Section .	

UL CERTIFICATE

Size Range:

Outside Diameter: 15.88mm - 355.6mm Thickness Range: 0.6mm - 10mm Length: 3.0 meter to 12.0 meter

Applications:

Liquid Transmission Idlers Mechanical And General Engineering Structural Water And Sewage Water Wells Fire Fighting Piling Agriculture Sprinkler System Green House Fencing & Many More

Tests Performed:

Hydrostatic Test Eddy Current Test Flattening/Flaring Test/Bend Test Chemical analysis Other tests as required by the relevant standard NOTE: For details please refer specification sheet.

Production Standards:

IS:1239(PART-I)/2004, BS:1387-1985 DIN2439, IN2440, DIN2441, DIN2444, EN:10255:2004, EN:10240:1998, EN:10219:2006 IS:9295-1983 IS:3601-2006 IS:1161-2014 IS:3589/2001 IS:4270:2001 ASTM A53 GR A&B SCH 20/40/80 ASTM A795 ASTM A135 BSEN 39:2001 EN:10217-1 AS:1074 AS NZS:1163 ASTM A252 ASTM A500

Finishing Operations:

Plain End Bevelled Threaded and Socketed Grooved Cut lengths

Surface Protection:

Black (self colored uncoated) Outside protective coating oil/ varnish/Lacquered Hot dip Galvanised Pre-Galvanised

Oiled/Varnish

Hot Dip Galvanised

Pre-Galvanised

Black (Self colored uncoated)

Technical Data of MS Black Round Tubes

Specification 15:1239 (Part-1) 2004 - DIN 2439, DIN 2440, DIN 2441 (Equivalent BS: 1387: 1985 / EN 10255: 2004 / DIN 2444)

			(Equivalent	00.1007	15007 21	10200.20017				
NB and	d Series	Outside	Diameter	Wall Thikness		Nominal Weight				
ND und	a Series	Min. Max		Plai	n End	Screwed & Socketed				
		mm	mm	mm	SWG	Kg/M	Meters/Tonnes	Kg/M	Meters/Tonnes	
15	L	21.0	21.4	2.0	14	0.947	1052	0.96	1046	
	М	21.0	21.8	2.6	12	1.21	826	1.22	820	
	Н	21.0	21.8	3.2	10	1.44	694	1.45	690	
20	L	26.4	26.9	2.3	13	1.38	725	1.39	719	
	М	26.5	27.3	2.6	12	1.56	641	1.57	637	
	Н	26.5	27.3	3.2	10	1.87	535	1.88	532	
25	L	33.2	33.8	2.6	12	1.98	505	2.00	500	
	М	33.3	34.2	3.2	10	2.41	415	2.43	411.5	
	Н	33.3	34.2	4.0	8	2.93	341	2.95	339	
32	L	41.9	42.5	2.6	12	2.54	394	2.57	389	
	М	42.0	42.9	3.2	10	3.1	322	3.13	319	
	Н	42.0	42.9	4.0	8	3.79	264	3.82	262	
40	L	47.8	48.4	2.9	11	3.23	310	3.27	306	
	М	47.8	48.8	3.2	10	3.56	281	3.60	278	
	Н	47.9	48.8	4.0	8	4.37	229	4.41	227	
50	L	59.6	60.2	2.9	11	4.08	245	4.15	241	
	М	59.7	60.8	3.6	9	5.03	199	5.10	196	
	Н	59.7	60.8	4.5	7	6.19	161	6.26	160	
65	L	75.2	76	3.2	10	5.71	175	5.83	171.5	
	М	75.3	76.6	3.6	9	6.42	156	6.54	153	
	Н	75.3	76.6	4.5	7	7.93	126	8.05	124	
80	L	87.9	88.7	3.2	10	6.72	149	6.89	145	
	М	88.0	89.5	4.0	8	8.36	120	8.53	117	
	Н	88.0	89.5	4.8	6	9.9	101	10.10	96	
100	L	113.0	113.9	3.6	9	9.75	102	10.00	100	
	М	113.1	115	4.5	7	12.2	82	12.50	80	
	Н	113.1	115	5.4	5	14.5	69	14.80	67.5	
125	М	138.5	140.8	4.8	6	15.9	63	16.40	61	
	Н	138.5	140.8	5.4	5	17.9	56	18.40	54	
150	М	163.9	166.5	4.8	6	18.9	53	19.50	51	
	Н	163.9	166.5	5.4	5	21.3	47	21.90	46	

Thickness & Mass are applicable for Black & Galvanised Steel Tubes as per clause 8.1.1 of IS : 1239 (Part-1) 2004 This specification conforms to CE Mark conferred by Det Norske Veritas, Netherlands.

Tolerance								
A - Thickness	Tolerance	B- Weight	Tolerance	Length Tolerance				
1. Light Tubes	+ not limited -8%	1. Single Tube (Light Series)	+10% -8%					
2. Medium &	+ not limited -10%	2. Single Tube (Medium & Heavy Series)	±10%	Unless otherwise				
Heavy Tubes		3. For quantities per load of 10 tonnes	+7.5% - 5%	Specified 4 to 7 mtrs.				
		minimum (Light Series)		Can also be supplied in				
		4. For quantities per load of 10 tonnes	±7.5%	Fix Lengths ±5cm.				
		minimum (Medium and Heavy Series)						

ERW Steel tubes for idlers for Belt conveyors as per IS 9295 – 1983 **Dimension and Nominal Masses**

mm

3.65

4.05

4.50

4.85

5.40

6.30

3.65

4.05

4.50

4.85

5.40

6.30

4.05

4.50

4.85

5.40

6.30

4.05

4.50

4.85

4.50

4.85

5.40

6.30

4.50

4.85

5.40

6.30

4.50

4.85

5.40

4.50

4.85

5.40

6.30

4.50

4.85

5.40

6.30

4.50

5.40

4.85

6.30

4.50

4.85

5.40

6.30

4.50

4.85

5.40

6.30

5.40

6.30

5.40

6.30

Mass

Kg./mtr

5.39

5.94

6.55

7.01

7.74

8.89

6.52

7.20

7.95

8.52

9.42

10.84

8.74

9.37

10.05

11.12

12.83

9.74

10.78

11.57

12.19

13.09

14.50

13.59

14.61

16.19

18.75

15.00

14.30

15.33

16.99

15.00

16.13

17.89

20.73

16.41

17.65

19.58

22.70

17.15

18.44

20.46

23.72

17.82

19.17

21.27

24.67

18.18

19.55

21.69

25.69

25.08

29.12

28.46

33.06

Meters

Tonnes

186

168

153

143

143

129

153

139

126

117

106

92

118

107

99

90

78

103

93

86

78

76

69

53

74

68

62

53

69.9

65.2

58.8

67

62

56

48

61

57

51

44

58

49

42

49

56

52

47

41

55

51

46

40

40

40

34

34

Outside Diameter Thickness

mm

63.50

76.10

88.90

101.60

114.30

127.0

133.0

139.70

152.40

159.00

165.10

168.30

193.70

219.10

•	In
	In
	wi

Tooling is adjustable and can manufacture all sizes within its operating range with improved dimensional accuracy. The surface finish of incoming strip is improved by 30%. Cold work is reduced & energy savings are considerable.

Typically two cages are used in RSM which are cum rotating. This is required to eliminate any torsion load which may be induced into the tube by the process. This results in even reduction on full surface of tube. Sizing the tube in only 2 passes keeps the residual stress low thereby preserving more of the material elongation test tube mill manipulation.

Tubes that are processed through RSM have no significant change in residual stress in the traverse direction. In the longitudinal direction, there is a large reduction in the surface residual tensile stress.

.

a. Outside diameter	± 0.8%
b. Ovality below 168.3mm	0.5mm
c. Ovality including 168.3mm & above	1.0mm
d. Weight kg/mtr	
- Single tube	±10%
e. For truck load of 10 tonnes	±7.5%
f. Thickness	±10%
g. Grade	
- ERW grade	YST 210 & YST 240 &
C C	YST 310

Advantages of RSM Technology

between Non-Standard Diameter possible online between Non-Standard Diameter there can be adjustment vithout change of tooling. Diameter accuracy and roundness achieved with Rotary sizing technology is of very high standard as compared to conventional sizing mills.

Surface Finish Improves

Achiv 58.75 ± 0.022mm

• Even and Low Residual Stress

END USES

- Idler Tubes for Conveyors
- Propeller Shaft Tubes
- Bobbin Tubes for Textile Industry
- High Precision Diameter
- High Rotational Application

Rotating RSM Roller and Cage

ERW steel tube for water & sewage purpose conforming to IS : 3589/2001

N. B	Outside	Wall	Plair	nend
size	Diameter	thickness	Mass	Meters
mm	mm	mm	Kg./mtr	Tonnes
150	168.3	2.60	10.60	94
		3.20	13.00	77
		4.00	16.20	62
		4.50	18.20	55
		5.00	20.10	50
		6.30	25.20	40
175	193.7	2.60	12.30	81
		3.60	16.90	59
		4.50	21.00	48
		6.30	29.10	34
200	219.1	2.60	23.80	72
		3.60	33.10	52
		4.50	23.80	42
		6.30	33.10	30
250	273	3.60	23.90	42
		4.00	26.50	38
		5.00	33.90	30
		6.30	41.40	24
		7.10	46.57	21
		8.00	52.30	19
		10.00	64.90	15
300	323.9	4.00	31.60	32
		5.00	35.40	28
		5.60	44.00	23
		7.10	55.50	18
350	355.6	5.60	48.33	21
		6.40	55.11	18
		7.10	61.02	16
		7.90	67.74	15
		8.70	74.42	13
		9.50	81.08	12

Tolerance

A. Outside diameter of pipe B. Ovality C. Thickness	±0.75% =Max. 1% ±10%
D. Length	
Unless other specified, length are in single	
random length of 4 to 7 meter.	
E . Mass per truck load of 10 tonnes of above	+7.5%

Mechanical Properties

Grade	T.S. Mpa MIN	Y.S. Mpa MIN	% age Elongation of MIN
Fe 330	330	195	20
Fe 410	410	235	18
Fe 450	450	275	15

ERW steel tube for water walls conforming to IS : 4270/ 2001 plain end casing pipes / screwed and socketed casing pipes

N. B size	Outside Diameter	Wall thickness		minal eight	Socket	Socket Length (min)
mm	mm	mm	Kg/m	m/tonnes	mm	mm
100	114.3	5.0	13.48	74	130	144.3
	114.3	5.4	14.5	69	157	120.6
125	141.3	5.0	16.8	59		
	141.3	5.4	18.1	55	184	127
		7.1	23.5	42.5		
150	168.3	5.0	20.13	50	211.16	152.4
	168.3	5.4	21.6	46		
		7.1	28.2	35.5	237	152.4
175	193.7	5.4	25.1	40		
	193.7	6.4	29.6	34	291	177.8
		8.0	36.6	27		
200	219.1	5.4	28.46	35	346	177.8
	219.1	8.0	33.6	30		
		10.0	41.6	24		
250	273.1	7.1	46.57	21		
	273.1	8.0	52.3	19		
		10.0	64.9	15		
300	323.9	7.1	55.47	18		
	323.9	8.0	62.3	16		
		10.0	77.4	13		
350	355.6	5.6	48.33	21		
		6.4	55.11	18		
		7.1	61.02	16		
		7.9	67.74	15		
		8.7	74.42	13		
		9.5	81.08	12		

Tolerance

a. Outside diameter of pipe	±1%
b. Thickness Up to 406.4mm OD	(+)15%
	(-)12.5%
c. Weight	(+)10%
- Single tube	(-)8%
d. Length	
Unless otherwise specified	4 to 7 mtrs

Mechanical Properties

Grade	Y.S. (min) Mpa MIN	T.S. (min) Mpa MIN	% age MIN. Elongation on 5.65/so=GI.
Fe 410	235	410	15%
Fe 450	275	450	13%

Note: these are preferred OD & thickness. Other sizes not included may be supplied as specified by purchaser.

	Steel tubes for structural purposes confirming to IS:1161-2014										
NB	OD	Thk	Mass	Area of Cross- Section	Internal Volume	Sur	face	Moment of Inertia	Modulus of Section	Radius of Gyration	Square of Radius of Gyration
mm (I)	mm (2)	mm (3)	kg/m (4)	cm2 (5)	cm3/m (6)	External cm3/m (7)	Internal cm3/m (8)	cm2/m (9)	cm3 (IO)	cm (11)	cm2 (12)
(1)	21.3	2	0.952	1.21	235	669	543	0.57	0.54	0.69	0.47
15	21.3 21.3	2.6 3.2	1.20 1.43	1.53 1.82	204 174	669 669	506 468	0.68 0.77	0.64 0.72	0.67 0.65	0.45 0.42
	26.9	2.3	1.40	1.78	391	845	701	1.36	1.01	0.85	0.42
20	26.9	2.6	1.56	1.98	370	845	682	1.48	1.10	0.86	0.75
	26.9	3.2	1.87	2.38	330	845	644	1.70 3.09	1.27	0.85	0.71
25	33.7 33.7	2.6 3.2	1.99 2.41	2.54 3.07	638 585	1 1159 1 059	895 858	3.60	1.84 2.14	1.10 1.08	1.22 1.18
	33.7	4	2.93	3.73	519	1 059	807	4.19	2.49	1.06	1.12
	42.4	2.6	2.55	3.25	I 087	1 332	1 169	6.46	3.05	1.41	1.99
32	42.4	3.2	3.00	3.94	I 018	1 332	1 131	7.62	3.59	1.39	1.93
	42.4 48.3	4 2.9	3.79 3.25	4.83 4.14	929 1419	1 332 1 517	1 081 1 335	8.99 10.70	4.24 4.43	1.36 1.61	1.86 2.59
40	48.3	3.2	3.56	4.53	1379	1 517	1 316	11.59	4.80	1.60	2.56
	48.3	4	4.37	5.57	1276	1 517	1266	13.77	5.70	1.57	2.47
	60.3	2.9	4.11	5.23	2 333	1894	1 712	21.59	7.16	2.03	4.13
50	60.3	3.6	5.03	6.41	2 215	1894	1668	25.87	8.58	2.01	4.03
	60.3 76.1	4.5 2.9	6.19 5.24	7.89 6.67	2067 3 882	1 894 2 391	1 612 2 209	30.90 44.74	10.25 11.76	1.98 2.59	3.92 6.71
65	76.1	3.6	6.44	8.20	3 728	2 391	2 165	54.01	14.19	2.57	6.59
	76.1	4.5	7.95	10.12	3 536	2 391	2 108	65.12	17.11	2.54	6.43
	88.9	3.2	6.76	8.62	5 346	2 793	2 592	79.21	17.82	3.03	9.19
80	88.9	4	8.38	10.67	5140	2 793	2 542	96.34	21.67	3.00	9.03
	88.9 101.6	4.8 3.6	9 8.70	12.68 11.08	4 939 6 999	2 793 3 192	2 491 2 966	112.49 133.24	25.31 26.23	2.98 3.47	8.87 12.02
90	101.6	4	9.63	12.26	6 881	3192	2 941	146.28	28.8	3.45	11.93
	101.6	4.8	11.46	14.60	6 648	3192	2 890	171.39	33.74	3.43	11.74
	114.3	3.6	9.83	12.52	9 009	3591	3 365	191.98	33.59	4.33	15.33
100	114.3	4.5	12.19	15.52	8 709	3591	3 308	234.32	41.00	4.32	15.10
	114.3 127	5.4 4.5	14.5 13.59	18.47 17.32	8 413 10 936	3591 3990	3 252 3 707	274.54 325.29	48.04 51.23	4.3 4.33	14.86 18.78
110	127	4.8	14.47	18.43	10 825	3990	3 688	344.50	54.25	4.32	18.69
	127	5.4	16.19	20.63	10 605	3990	3 651	382.04	60.16	4.3	18.52
	139.7	4.5	15.00	19.11	13 417	4 389	4 106	437.20	62.59	4.78	22.87
125	139.7	4.8 5.4	15.97	20.34 22.78	13 295	4 389	4 087	463.33	66.33 77.66	4.77 4.75	22.78 22.58
	139.7 152.4	5.4 4.5	17.89 16.41	22.78	13 050 16 151	4 389 4 788	4 050 4 505	514.50 572.24	73.66 75.10	4.75 5.23	22.58
135	152.4	4.8	17.47	22.26	16 016	4 788	4 486	606.76	79.63	5.22	27.26
	152.4	5.4	19.58	24.94	15 748	4 788	4 448	674.51	88.52	. 5.20	27.05
	165.1	4.5	17.82	22.70	19 138	5 187	4 904	732.57	88.74	5.68	32.27
150	165.1 165.1	4.8 5.4	18.98	24.17	18 991 18 699	5 187 5 187	4 885	777.13	94.14	5.67 5.65	32.15 31.92
150	165.1 165.1	5.4 5.9	21.27 23.20	27.09 29.50	18 699 18 465	5 187 5 189	4 847 4 818	864.70 970.00	104.75 113.40	5.65	31.92
	165.1	6.3	24.67	31.43	18 265	5 187	4 791	992.28	120.20	5.62	31.57
	168.3	4.5	18.18	23.16	19 931	5 287	5 005	777.22	92.36	5.79	33.56
150	168.3	4.8	19.35	24.66	19 781	5 287	4 986	824.57	97.99	5.78	33.44
	168.3	5.4	21.69	27.64	19 483	5 287	4 948	917.69	109.05	5.76	33.21
	168.3 193.7	6.3 4.8	25.17 22.36	32.06 28.49	19 040 26 619	5 287 6 085	4 891 5 784	1053.42 1271.39	125.18 131.27	5.73 6.68	32.85 44.63
175	193.7	4.0 5.4	25.08	31.94	26 273	6 085	5 746	1416.97	146.31	6.66	44.36
	193.7	5.9	27.33	34.81	25 987	6 085	5 715	1536.13	158.61	6.64	44.13
	193.7	6.3	29.12	37.09	25 759	6 085	5 689	1630.05	168.31	6.63	43.95

Steel tubes for Structural purposes conforming to IS:1161-2014

NB	OD	Thk	Mass	Area of Cross- Section	Internal Volume	Sui	Surface		Modulus of Section	Radius of Gyration	Square of Radius of Gyration
						External	Internal				
mm	mm	mm	kg/m	cm2	cm3/m	cm3/m	cm3/m	cm2/m	cm3	cm	cm2
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(IO)	(11)	(12)
	219.1	4.8	25.37	32.32	34471	6 883	6 582	1856.03	169.42	7.58	57.43
	219.1	5.6	29.49	37.56	33 947	6 883	6531	2141.61	195.49	7.55	57.02
	219.1	5.9	31.02	39.52	33 751	6 883	6 513	2247.01	205.11	7.54	56.86
200	219.1	6.3	33.06	42.12	33 491	6 883	6 487	2386.14	217.81	7.53	56.65
	219.1	8	41.65	53.06	32 397	6 883	6 381	2959.63	270.16	7.47	55.78
	219.1	10	51.57	65.69	31 134	6 883	6 255	3598.44	328.47	7.40	54.78
	273	5.9	38.86	49.51	53 584	8 577	8 206	4417.18	323.60	9.45	89.22
250	273	6.3	41.44	52.79	53 256	8 577	8 181	4695.82	344.02	9.43	88.96
	273	8	52.28	66.60	51 875	8 577	8 074	5851.71	428.70	9.37	87.86
	273	10	64.86	82.62	50 273	8 577	7 948	7154.09	524.11	9.31	86.59
	323.9	6.3	49.34	62.86	76111	10 176	9 780	7928.90	489.59	11.23	126.14
300	323.9	8	62.32	79.39	74 458	10 176	9 673	9910.08	611.92	11.17	124.82
	323.9	10	77.41	98.61	72 536	10 176	9 547	12158.34	750.75	11.10	123.29
	355.6	8	68.58	87.36	90 579	11 172	10 669	13201.37	742.48	12.29	151.11
350	355.6	10	85.23	108.57	88 457	11 172	10 543	16223.50	912.46	12.22	149.42

*254 mm OD is available on demand.

Mechanical Properties

Grade	Y.S. (min) Mpa	T.S. (min) Mpa	% age Elongation on
YST- 210	210	330	20
YST- 240	240	410	17
YST- 310	310	450	14
YST- 355	355	490	10

Weight	Tolerance
Single Tube	±10%
10 ton lot	±7.5%

Tolerance

 On outside diameter up to & including 48.3= +0.4mm/-0.8mm 	
2. Over 48.3mm=+/-1%	

Thickness	Tolerance		
For all size	±10%		
Welded tubes	±10%		

APL Apollo Tubes Limited offers a broad range of high quality Scaffolding Components. The product range includes SCAFFOLD TUBES as per EN-39. Scaffolding Components includes cuplock scaffolding, wedgelock scaffolding & support tubes, fittings (couplers) and framework components and accessories as well as a vast range of other components.

Tube Scaffoldings are widely used for supporting men and material, tools and tackles during construction, alteration demolition and maintenance work because of their several advantages over conventional type of timber bamboo scaffolding.

We offer Scaffolding Tubes which also include complete range of components that are strong, durable and economical. These items are ideally suited for wide application in construction and building structures.

Scaffolding Tubes

Size		Thick	kness	Ova	Weight		
Inches	mm	Inches	mm	Inches	mm	Inches	
11/2	48.3	0.126	3.2	0.02	0.5	2.392	
11/2	48.3	0.157	4.0	0.02	0.5	2.937	

Tolerance

Outside Diameter		Thickness	Weight		
0.5		±/-10%	±7.5% On Single Tube		
Steel Grade Mechanical Properties Yield Strength Tensile Strength	: 2	235JRH 35 MPA MIN 40 / 520 MPA	End Finish Straightness Flattening Test		Square Cut Imm In 600mm Two stages Flatten Upto 75% Of Tube Dia For Weld Flatten Upto 60^ Of Tube Dia For Material Bend Test Also Available
Chemical Composition Carbon	: C).20% Max	Zinc Coating	:	45 Microns Minimum Outside
Silicon Manganese Phosphorous Sulphur Aluminium	: C : C : C	0.05% Max 0.40% Max 0.40% Max 0.45% Max 0.02% Max	Marking Delivery Condition	:	En 39 Aplapollo Tubes -3.2/4.0 a) As Rolled Condition - (Without Protection) b) Hot Dip Calvanised

nt mm 3.56 4.37

Techincal data of IS:3601 2006 tubes for Mechanical & General Engg. Purpose

N.B	size	Approx	Thicknes	Wt.kg/mtr	Meters per
14.0	5120	O.D	mm	wt.kg/mti	
Mm	In	(mm)			tonnes
15	1/2"	21.3	1.8	0.866	1155
15	12	21.5	2.0	0.952	1050
				1.2	
			2.6		833
			3.2	1.43	699
			4.0	1.71	585
20	3/4"	26.9	1.8	1.11	901
			2.0	1.23	813
			2.3	1.4	714
			2.6	1.56	641
			3.2	1.87	535
			4.0	2.26	442
25	1"	33.7	2.0	1.56	641
			2.3	1.78	562
			2.6	1.99	503
			3.2	2.41	415
			4.0	2.93	341
70	1.05"	(2)	4.5	3.24	309
32	1.25"	42.4	2.3	2.27	441
			2.6	2.55	392
			3.2	3.09	324
			3.6	3.44	291
			4.0	3.79	264
			5.0	4.61	217
			5.4	4.93	203
40	1.5"	48.3	2.3	2.61	383
			2.6	2.93	341
			2.9	3.25	308
			3.2	3.56	281
			4.0	4.37	229
			4.9	5.23	191
			5.0	5.34	187
			5.6	5.900	170
			5.9	6.160	162
50	2"	60.3	2.3	3.29	304
			2.6	3.7	270
			2.9	4.11	243
			3.2	4.51	222
			3.6	5.03	199
			4.0	5.55	180
			4.5	6.19	162
			5.0	6.82	147
			5.6	7.55	133
			6.3	8.39	119
65	2.5"	76.1	2.6	5.24	191
00	2.5	/ 0.1	3.2	5.75	174
			3.2	6.44	155
			4.0	7.11	141
					dolor 👬 amet,
			5.0	8.777	114
80	3"	88.9	5.4	9.42	106
			6.3	10.8	93
			7.1	12.1	83
			2.9	6.15	163
			3.2	6.76	148
			4.0	8.38	119
			5.0	10.3	97
			5.4	11.1	90
			5.6	11.5	87
			6.3	12.8	78
			0.5	12.0	/0

Grade: ERW-WP- 100

Techincal da	ata of pipes o	conforming to	ASTM A-53	Gr. A&B
--------------	----------------	---------------	-----------	---------

Nomir	nal Bore	Outside	Diameter	Schedule	Wall Th	nickness	Weight of Pipes Plain End		No. of Pcs
Mm	Inch	Mm	Inch		Mm	Inch	Kg/Mtr.	Lbs/Ft	per Bundle
15	1/2	21.3	0.84	40	2.77	0.109	1.27	0.85	120
				80	3.73	0.147	1.62	1.09	
20	3/4	26.7	1.05	40	2.87	0.113	1.69	1.13	90
				80	3.91	0.154	2.2	1.48	
25	1	33.4	1.315	40	3.38	0.133	2.5	1.68	60
				80	4.55	0.179	3.24	2.17	
32	1 1/4	42.2	1.66	40	3.56	0.14	3.39	2.27	42
				80	4.85	0.191	4.47	3	
40	1 1/2	48.3	1.9	40	3.68	0.145	4.05	2.72	36
				80	5.08	0.2	5.41	3.63	
50	2	60.3	2.375	40	3.91	0.154	5.44	3.66	26
				80	5.54	0.218	7.48	5.03	
65	2 1/2	73	2.875	40	5.16	0.203	8.63	5.8	18
				80	7.01	0.276	11.41	7.67	
80	3	88.9	3.5	40	5.49	0.216	11.29	7.58	14
				80	7.62	0.3	15.27	10.26	
90	3 1/2	101.6	4	40	5.74	0.226	13.57	9.12	12
				80	8.08	0.318	18.63	12.52	
100	4	114.3	4.5	40	6.02	0.237	16.07	10.8	10
				80	8.56	0.337	22.32	15	
125	5	141.3	5.56	40	6.55	0.258	21.77	14.63	8
150	6	168.3	6.625	40	7.11	0.028	28.26	18.99	7
200	8	219.1	8.625	20	6.35	0.25	33.31	22.38	5
				30	7.04	0.277	36.31	24.72	3
				40	8.18	0.322	42.55	28.58	3
250	10	273	10.748	20	6.35	0.25	41.75	28.06	3
				30	7.8	0.307	51.01	34.27	3
				40	9.27	0.365	60.29	40.52	3
300	12	323.8	12.748	20	6.35	0.25	49.71	33.41	3
				30	8.38	0.33	65.18	43.1	3
				STD	9.52	0.375	73.78	49.61	3
				40	10.31	0.406	79.70	53.57	3
350	14	355.6	14	10	6.35	0.25	54.69	36.75	3
				20	7.92	0.312	67.9	45.65	3
				30	9.52	0.375	81.25	54.62	3

Chemical Properties

Composition, Max%

	Carbon	Manganese	Phosphorus	Sulphur	Copper	Nickel	Chromium	Molybdeneum	Vanadium
							А	А	А
Grade A	0.25	0.95	0.05	0.045	0.4	0.4	0.4	0.15	0.08
				80	3.37	0.147	1.62	1.09	20230
Grade B	0.3	1.2	0.05	0.045	0.4	0.4	0.4	0.15	0.08

Tolerance

Outside Diameter	Pipe Size upto & including Dn40	±0.4mm
	Pipe Size DN 50 or longer	+1-1% Thickness -12.5max
		Weight ±10%

Mechanical Properties

	Grade A	Grade B
Yield Strength	205Mpa(min)	240Mpa(min)
Tensile Strength	330Mpa(min)	415Mpa(min)
Elongation%	As per ATSM A-%53 table 4.1 4.2	

*This specification conform to UL certification conferred by underwriters laboratories, USA. ASTM A53 SCH.40 pipes are approved by Dubai, Sharjah & Abu Dhabi civil defence & also from Qatar civil defence.

B Sch. 20/40/80

OUTSIDE I	DIAMETER		METER E (mm) (Inch)	STANDARD	THICKNESS	WEI	GHT
(Inch)	(mm)	(Min)	(Max)	(mm)	(Inch)	(Kg/mtr)	(lb/ft)
				4.37	0.172	23.13	15.54
				4.78	0.188	25.24	16.96
				5.16	0.203	27.20	18.28
				5.56	0.219	29.29	19.68
				6.35	0.250	33.31	22.38
8 5⁄8"	219.1	216.91	221.29	7.04	0.277	36.79	24.72
		(8.539")	(8.712")	7.92	0.312	41.27	27.73
				8.18	0.322	42.54	28.58
				4.17	0.164	27.62	18.56
				4.37	0.172	28.94	19.45
				4.55	0.179	30.10	20.22
				4.78	0.188	31.59	21.22
				5.16	0.203	34.06	22.88
				5.56	0.219	36.69	24.65
10 3⁄4"	273.0	270.27	275.73	5.84	0.230	38.49	25.86
		(10.640'')	(10.855")	6.35	0.250	41.75	28.06
				7.09	0.279	46.47	31.22
				7.80	0.307	51.00	34.27
				8.74	0.344	56.94	38.26
				9.27	0.365	60.29	40.51
				4.78	0.188	37.57	25.24
				5.16	0.203	40.52	27.22
				5.56	0.219	43.65	29.33
				6.35	0.250	49.71	33.40
12 3⁄4"	323.8	320.56	327.04	7.14	0.281	55.74	37.45
		(12.620'')	(12.875")	7.92	0.312	61.73	41.48
				8.38	0.330	65.20	43.81
				8.74	0.344	67.89	45.61
				9.52	0.375	73.78	49.61
				10.31	0.406	79.73	53.52
				4.78	0.188	41.31	27.76
				5.16	0.203	44.56	29.94
				5.56	0.219	48.20	32.26
				5.84	0.230	50.39	33.86
				6.35	0.250	54.69	36.75
14"	355.6	352.04	359.156	7.14	0.281	61.33	41.21
		(13.859'')	(14.140")	7.92	0.312	67.94	45.65
				8.74	0.344	74.74	50.22
				9.52	0.375	81.25	54.62

Techincal data of pipes conforming to ASTM A252

Chemical Poperties: Phosphorus = 0.050% (Max.)

Mechanical Properties

	Grade 1	Grade 2	Grade 3
Tensile Strength (Mpa)	345	415	455
Yield Strength (Mpa)	205	240	310
% Elongation in (50mm)	30	25	20
*Deduction	1.50	1.25	1.00

Technical Details

Characteristics	Tolerances & Technical details
Outside Diameter (OD)	For Round Pipes ± 1 % of OD
Thickness	-12.5% of specific wall thickness.
Weight	For each tube – 5 % & + 15% of standard weight (Calculated Weight)
Length	Pipe shall be furnished in single random length, double random length or in uniform length as per the customer
	requirement.
Straightness	The finished pipe shall be reasonably straight.
End	Pipe shall be finished with Square cut (plain End) of Bevel End (30* - 0/+5*)
Surface Protection	Black & Galvanized coating as per Customer requirement
Marking (Stencilling)	APL APOLLO TUBES, Specification designation, Grade, Outside diameter, Thickness, Process of manufacturing &
	Heat No." on pipe and any thin specific as per the customer requirement.

ASTM A-795* (Black & Galvanised Steel Pipes for Fire Protection)

Nomin	al Dara	Outside	Diameter	SCH-10			No. of			SCH 40/30*			
Nomin	al Bore	Outside	Diameter	Wall Th	ickness	Weight I	Plain End	piece per	Wall Th	ickness	Weight I	Plain End	piece per
Mm	Inch	Mm	Inch	Mm	Inch	Mm	Inch	Bundle	Mm	Inch	Mm	Inch	Bundle
20	3/4	26.7	1.050	2.11	0.083	1.28	0.96	90	2.87	0.113	1.69	1.13	90
25	1	33.4	1.315	2.77	0.109	2.09	1.41	90	3.38	0.133	2.50	1.68	60
32	11/4	42.2	1.660	2.77	0.109	2.69	1.81	61	3.56	0.14	3.39	2.27	42
40	11/2	48.3	1.900	2.77	0.109	3.11	2.09	61	3.68	0.145	4.05	2.72	36
50	2	60.3	2.375	2.77	0.109	3.93	2.64	37	3.91	0.154	5.45	3.66	26
65	21/2	73.0	2.875	3.05	0.120	5.26	3.53	29	5.16	0.205	8.68	5.80	18
80	3	88.9	3.500	3.05	0.120	6.46	4.34	24	6.49	0.216	11.29	7.58	14
90	31/2	101.6	4.000	3.05	0.120	7.41	4.98	21	5.74	0.226	13.58	9.12	12
100	4	114.3	4.500	3.05	0.120	8.37	5.62	19	6.02	0.237	16.09	10.8	10
125	5	141.3	5.563	3.4	0.134	11.58	7.78	10	6.55	0.258	21.79	14.63	8
150	6	168.3	6.625	3.4	0.134	13.85	9.30	10	7.11	0.280	28.29	18.99	7
200	8	219.1	8.625	4.78	0.188	25.26	16.96	5	7.04*	0.277	36.82	24.72	5

*The specification conforms to UL conferred by underwriters laboratories USA

ASTM A-135 GRADE A&B (Black and Galvanised Steel Pipe)

Nemir	nal Bore	Outside Diameter			No. of			
NOTHI	lai bore	Outside	Diameter	Wall Th	ickness Weight Plain End			piece per
Mm	Inch	Mm	Inch	Mm	Inch	Mm	Inch	Bundle
20	3/4	26.7	1.050	2.11	0.083	1.28	0.96	90
25	1	33.4	1.315	2.77	0.109	2.09	1.41	90
32	11/4	42.2	1.66	2.77	0.109	2.69	1.81	61
40	11/2	48.3	1.900	2.77	0.109	3.11	2.09	61
50	2	60.3	2.375	2.77	0.109	3.93	2.64	37
65	21/2	73.0	2.875	3.05	0.120	5.26	3.53	29
80	3	88.9	3.500	3.05	0.120	6.46	4.34	24
90	31/2	101.6	4.000	3.05	0.120	7.41	4.98	21
100	4	114.3	4.500	3.05	0.120	8.37	5.62	19
125	5	141.3	5.563	3.40	0.134	11.58	7.78	14

Tolerance

Outside Diameter	Pipe Size upto & including DN 40 Pipe Size DN 50 or longer
Mechanical Properties	Chemical Propert

	Grade A	Grade B		Carbon	Manganese	Phosphorus	Sulphur
Yield Strength	205Mpa(min)	240Mpa(min)	Grade A	0.25	0.05	0.035	0.35
Tensile Strength	330Mpa(min)	415Mpa(min)	Grade B	0.3	1.2	0.35	0.35
Elongation %	35	30					

Galvanising

Minimum	0.49 Okg/Sq Mtr
Average	0.550kg/Sq Mtr

+ 1-0.4mm +1=1% Thickness -12.5(max) Weight +10%

rties

APPLICATIONS

OUR NATIONWIDE PRESENCE

OUR NETWORK OF INNER STRENGTH

 Plants
 Image: Constraints

 Image: Constraints
 Image: Constraints

 Image: Constraints
 Image: Constraints

 Image: Constraints
 Image: Constraints

